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ABSTRACT

What is the main purpose of visual motion processing? One very important aspect of motion processing
is definitively the generation of smooth pursuit eye movements. These eye movements avoid motion blur
of moving objects which would obstruct the analysis of the objects’ visual details. However, these eye
movements can only be executed if there is a moving target. So there is a very close and inseparable rela-
tionship between smooth pursuit and motion processing. The hub for visual motion processing is situated
in the middle temporal (MT) and medial superior temporal (MST) area. Despite the undoubted impor-
tance of these areas for the generation of smooth pursuit or goal-directed behavior in general, it is impor-
tant to keep in mind that motion processing in addition serves perceptual purposes such as object
recognition, structure-from-motion detection, scene segmentation, self-motion estimation and depth
perception. This review focuses at the beginning on pursuit-related activity recorded from MT and
MST, subsequently extends the view to goal-directed hand movements, and finally addresses the possible

contributions of these areas to motion perception.

© 2008 Elsevier Ltd. All rights reserved.

1. Basic features of neuronal responses recorded from MT and
MST

The middle temporal area (MT) in the posterior bank of the
superior temporal sulcus (STS) was first described more than 30
years ago (Allman & Kaas, 1971; Dubner & Zeki, 1971). MT can
be characterized by two key features: first, this area is anatomi-
cally defined by the intensive staining of myelin. Second, almost
all neurons respond to visual motion in a direction-selective man-
ner. If a visual stimulus, usually a group of coherent moving dots
within a stationary aperture adjusted to the location of the recep-
tive field, moves in the preferred direction, the firing rate of the
neuron increases above spontaneous activity. In contrast, if the
stimulus moves in the opposite direction, the firing rate is
decreased below spontaneous activity (see Fig. 1A). If more directions
of motion are tested, the directional tuning of the neuron can be
determined (see Fig. 1B). Frequently, this directional tuning is
described by a circular von Mises function. In addition to the
sensitivity to direction, MT neurons are also sensitive to the speed
of the visual stimulation (see Fig. 1C). Interestingly, the inhibition
caused by stimulus movement in the non-preferred direction is
constant and not speed-dependent.

Some years later, the adjacent medial superior temporal area
(MST) in the STS was described (Desimone & Ungerleider, 1986;
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Tanaka et al., 1986). MST receives direct input from MT (Maunsell
& van Essen, 1983; Ungerleider & Desimone, 1986) and is com-
posed of two different parts: the lateral aspect extending mainly
to the fundus of the STS (MSTI), and the dorsal part localized in
the anterior bank of the STS (MSTd) (Mikami, Newsome, & Wurtz,
1986). MSTI contains neurons with rather small receptive fields
and is important for the execution of smooth pursuit eye move-
ments. A large part of this review addresses the role of MSTL. On
the other hand, MSTd contains neurons with much larger receptive
fields and is most likely important for the analysis of optic flow
elicited by self-motion through a highly structured environment
(Bradley, Maxwell, Andersen, Banks, & Shenoy, 1996; Duffy &
Wurtz, 1991).

An important question asks whether the motion sensitivity ob-
served in area MT is established by local circuits in this area or
whether it is determined earlier in processing. A peculiarity of pri-
mates is that directionally selective ganglion cells are absent in the
primate retina. Directionally selective neurons are recorded from
V1, the first stage of cortical processing of visual information
(Hawken, Parker, & Lund, 1988; Hubel & Wiesel, 1968). There is
experimental evidence that exclusively these directionally selec-
tive neurons in V1 provide the direct input to MT (Movshon &
Newsome, 1996). In addition, there is indirect input from V1 to
MT via V2 (Ponce, Lomber, & Born, 2008). This indirect route seems
to be especially important for the selectivity of MT neurons for the
processing of disparity, i.e. the differences in left and right eye
images. Finally, there are also descriptions of a direct input to
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MT from the LGN (Nassi, Lyon, & Callaway, 2006; Sincich, Park,
Wohlgemuth, & Horton, 2004) whose function is not entirely clear
at present.

2. Details of pursuit-related activity recorded from MT and MST
neurons

In order to demarcate visual and extra-retinal signals contribut-
ing to the observed pursuit-related activity, we decided to use real
and imaginary targets. The real target consists of an hour-glass-like
figure; its height was adjusted to 20°. We trained our monkeys to
direct their gaze towards the intersection of the two diagonals. If
the target abruptly changed its position, the monkeys performed
saccades. If the target moved at constant velocity, the monkeys
performed smooth pursuit. In the next step, we created the imag-
inary target by removing the central part of the real figure (12°), in
particular the intersection. We adjusted the size of the blanked
area to the typical size of receptive fields of visual tracking (VT)
neurons recorded from MSTIL. In order to direct their gaze towards
this imaginary target, the monkeys had to reconstruct the invisible
intersection of diagonals using the peripheral visual stimulation.
Whenever the monkeys fixated the line endings, the ongoing trial
was aborted because of violation of the eye control window. At
the outset, we carefully examined the oculo-motor repertoire of
our monkeys (Ilg & Thier, 1999).

In short, we observed that saccade latencies were slightly in-
creased for changes in the position of imaginary targets compared
to real targets. With respect to smooth pursuit, pursuit onset la-
tency proved to be similar for real and imaginary targets. The ini-
tial acceleration was markedly reduced in the case of the imaginary
target. When we analyzed the steady-state pursuit gain, we found
comparable gain values during pursuit of the real and the imagi-
nary hour-glass and imaginary triangle. This imaginary triangle
consists of the upper half of the imaginary hour-glass and therefore
did not provide foveal enclosure of the pursuit target. The gain
markedly dropped if the monkey was asked to pursue a single
dot para-foveally. We concluded from these data that precisely ad-
justed pursuit eye movements were achieved whenever a figure,
independent of whether it was a real or imaginary figure, was
tracked.

Subsequently, we recorded pursuit-related activity during
tracking of the real and imaginary target from MT and MSTI (llg
& Thier, 2003). We applied the following statistical criteria to eval-
uate the pursuit-related responses. First, pursuit-related activity
during smooth pursuit in the preferred direction of the recorded
neuron had to be significantly larger as during pursuit in the oppo-
site, non-preferred direction. 82 neurons from MT and 356 neurons

>

Fig. 1. Responses of a typical MT neuron to visual motion (unit 205.1, recordings
performed by Inés Trigo-Damas). (A) The response to rightward and leftward mo-
tion of a random dot pattern (velocity 25°/s, size 15°, 1s each, located on the
receptive field centered 18° left on the horizontal meridian). The activity of every
single trial is shown as a raster display; the summed activity of all trials is displayed
as spike density function (width 20 ms). The grey horizontal lines denote the mean
activity caused by rightward and leftward movement, respectively. The latency of
the response was 60 ms. (B) The resulting directional tuning of this neuron in a
polar plot. Every blue dot represents the mean activity caused by movement of the
stimulus in this direction. The red profile shows the fitted von Mises function
flainy = A/ (2 % I % Iggq)  e®(os@ir=T) The grey circle indicates the spontaneous act-
ivity. The preferred direction of this neuron was to the right. (C) The tuning to speed
of this neuron; red represents rightward (=preferred) direction, blue leftward mo-
vement. The excitation elicited by a stimulus moving in the preferred direction can
be expressed as e = A * vel® x e-“®*O Note that there was a clear modulation of
activity in the preferred direction (Kruskal Wallis test of the activities for the diff-
erent velocities results in p = 0.0021), but no modulation was present in the non-
preferred direction (Kruskal Wallis test p = 0.0985). The preferred velocity of this
neuron was 52°/s. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

from MSTI meet this criterion. Second, we tested whether the
activity during pursuit of the real target in the preferred direction
was significantly different from the activity observed during pur-
suit of the imaginary target. All neurons recorded from MT showed
a significant difference here, emphasizing the visual nature of this
response in MT. In contrast, the activity of 178 neurons from MSTI
showed no significant difference during pursuit of the real and
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imaginary target. It should be noted that this similarity of re-
sponses could in theory also be due to peripheral stimulation by
the imaginary target if the neurons would exhibit very large recep-
tive fields. In order to clarify this point, we used a passive visual
stimulation. We moved the imaginary target back and forth while
the monkey fixated a stationary target. Eighty-five out of the 178
neurons did not respond to this manipulation: in other words,
the response of these neurons observed during pursuit of the imag-
inary target could not be explained by peripheral visual stimula-
tion. In accordance with earlier studies (Kawano, Sasaki, &
Yamashita, 1984), we termed these neurons visual tracking (VT)
neurons to emphasize their visual and eye-movement-related re-
sponses. The remaining 93 neurons responded only to retinal im-
age motion, they share this property with neurons recorded from
MT. The presence of extra-retinal signals in the activity recorded
from MST and its absence in the activity of MT neurons was previ-
ously documented by experiments performed by Robert Wurtz and
his colleagues (Newsome, Wurtz, & Komatsu, 1988). Instead of spa-
tially removing visual stimulation, they removed the pursuit target
briefly in time to test whether the pursuit-related activity contains
extra-retinal signals.

In order to examine possible existing head-movement-related
signals, it is important to suppress the vestibulo-ocular reflex
(VOR). If the VOR would not be suppressed, eye movements in
the opposite direction to the head movements occur and possibly
cancel the response to the head movement. It is impossible to sup-
press the VOR voluntarily. However, if a target moves identical to
the head, the VOR can be suppressed by fixation of this target. In
13 VT neurons recorded from MSTI, we were able to analyze the re-
sponses to head movements while the monkeys were sinusoidally
rotated around the yaw or inter-aural axis depending on the pre-
ferred direction of the neuron. The monkeys fixated a small target
which moved together with the monkey sitting on a turntable. The
neuronal activity showed a clear modulation during this manipula-
tion as reported earlier (Thier & Erickson, 1992). The activity of VT
neurons recorded from MSTI is therefore affected by three different
parameters: retinal image motion, ongoing eye and head move-
ments. It is important to note that the majority of VT neurons
showed identical preferred directions for these three inputs. In
contrast, the activity of MT neurons did not show these extra-ret-
inal response qualities; these neurons responded exclusively to
retinal image motion. However, for reasons of completeness, the
effect of directing attention to the visual stimulation on neuronal
responses in MT should briefly be addressed. The response of MT
neurons to visual motion is increased if the monkey is attending
to the stimulus (Treue & Maunsell, 1996). Obviously, this atten-
tional effect is another extra-retinal response property which is
present in MT as well as in MST neurons.

Since VT neurons in MST receive inputs related to retinal image
motion, eye and head movements, their activity is able to encode tar-
get trajectory in world-centered coordinates (see Fig. 3). It should be
noted here again that only VT neurons have these response proper-
ties; many other neurons responded exclusively to visual motion, for
instance. In a recently developed model based on the assumption of
iso-directionality of the visual, eye and head movement-related re-
sponses and similar tuning functions, very realistic tracking param-
eters of the model were obtained (Dicke & Thier, 1999). These
parameters included steady-state pursuit velocity and initial accel-
eration as well as eye velocity deficits following unilateral lesions.
In contrast to the approach stemming from the idea that MST neu-
rons represent target motion in space, smooth pursuit eye move-
ments could be conceptualized as a negative feedback system
operating on retinal image motion of the pursuit target. The main
advantage of this concept is its simplicity. The output of these retinal
models is very close to the actual parameters of smooth pursuit.
However, there are three arguments why it is not very likely that

the brain generates smooth pursuit within such a retina-based feed-
back system: First, seminal experiments performed by Emilio Bizzi
and colleagues showed that combined eye and head movements
are guided by an internal representation of target movement in
space, not within a retinal frame of reference (Lanman, Bizzi, & Al-
lum, 1978). Second, the presence of eye-movement-related signals
as shown above also contradict the assumption of processing within
a retinal frame of reference. Third, the perception of our environ-
ment during execution of pursuit is clearly not dependent on a reti-
nal frame. Despite self-induced image motion on the retina, we
perceive our surrounds stationary as they are in reality. It does not
seem very plausible that the brain uses two different reference
frames for action and perception.

Finally, the activity of VT neurons could only be casually related
to the generation of smooth pursuit if the latency of the neuronal
responses was shorter than the eye-movement latency. On aver-
age, the latency of the neuronal response to the real and imaginary
target was not significantly different (in the order of 120 ms), but
nevertheless shorter than the eye-movement latency (in the order
of 170 ms). However, some neurons had longer latencies than the
eye movements. As these neurons could not be directly involved
in the generation of pursuit, they might be important for signaling
eye movements to other parts of the brain that are necessary for
the correct processing of self-induced retinal motion.

3. More experimental evidence for the existence of extra-retinal
signals

The demonstration of eye-movement-related signals in the
activity of VT neurons in MSTI is crucial for the argument that
these neurons use an external frame of reference. To corroborate
the existence of the eye-movement-related signals, we asked
whether there were other possibilities to prove the existence of
these signals in the activity of VT neurons. If the appearance of a
moving target is predictable, human subjects are able to perform
anticipatory pursuit (Barnes & Asselman, 1991; Kowler & Stein-
man, 1979). Very recently, we have shown that the ability to per-
form anticipatory pursuit is similar in human and rhesus monkeys
(Freyberg & Ilg, 2007). Since anticipatory pursuit initiation depends
exclusively on prediction and not on actual visual motion signals,
this situation can also be used to document extra-retinal
responses. To examine anticipatory pursuit, we applied a paradigm
in which the target moved periodically (period of 3 s) from 9° left
to 9° right at 12°/s and vice versa (Ilg, 2003). After the training, in
which the target was continuously visible, the test stimulus was
shown during which the target was only visible from 4.5° left to
4.5° right with the same periodicity. We determined mean eye
speed in 100 ms intervals around the predictable appearance of
the target. We contrasted the prediction condition with a control
condition in which the monkey could not anticipate the appear-
ance of the target. The eye velocity was significantly higher in
the first three time bins of the prediction conditions (see Fig. 2A
and B). Only 200 ms after target appearance, when the visual
motion signal of the target was available, the significant
differences in eye speed disappeared.

We recorded from 27 neurons in MSTI in which we were able to
document extra-retinal responses by display of the imaginary tar-
get (VT neurons) and from 19 neurons lacking this response prop-
erty (nVT neurons). When the population response of VT neurons
obtained during the anticipatory eye movements was compared
to the response in the control condition, a difference in latency
was apparent (see Fig. 2C). The latency was significantly shorter
in the prediction condition compared to the control condition. This
difference in latency was absent in the population response of the
nVT neurons (see Fig. 2D). The reason for the shorter latency in the
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Fig. 2. Eye movements and population responses during anticipatory pursuit eye movements. Data related to the anticipation condition are drawn in red; data related to the
control condition without anticipation are drawn in green. Time zero indicates the appearance of the moving target. On the left, the results obtained from 27 VT neurons with
extra-retinal response properties are presented. On the right, the results from 19 nVT neurons without extra-retinal responses are shown. Eye velocity is computed in 100 ms
time bins (A and B), the population responses in 10 ms bins (C and D). Direction of target movement was in the preferred direction of each recorded neuron. The latency of
every neuron was determined independently, the vertical dashed lines represent the mean values, and the related horizontal bars show the standard errors. Note that the
latency of the VT neurons was significantly shorter in the prediction condition shown in C, this difference was absent for the nVT neurons shown in extra-retinal (modified
from (Ilg, 2003)). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Two different tracking conditions. In the left diagram, the monkey was instructed to track the target by an isolated eye movement only. In the right, the monkey was
asked to perform a combined eye and head movement. The mean gaze, head, and eye position are presented based on 10 trials each together with the resulting standard error.
Target position is indicated by the black profile. Time zero represents the onset of target movement. Note that the resulting gaze movements are very similar in both
conditions. The reason for the standard error of the head position in the eye movement only condition was the variability of head position from trial to trial (modified from

(Ilg et al., 2004)).

prediction condition lies in the extra-retinal response properties. In
this condition, the monkeys performed smooth pursuit before the
target appeared. The nVT neurons, whose activity is not influenced
by the eye movements, only responded to visual motion signals
and did therefore not have different latencies (Ilg, 2003). Clearly,
these results support expectation put forward previously that the
activity of VT neurons in MSTI is influenced by the ongoing eye
movements.

4. Origin of extra-retinal response properties
In summary, there are two lines of evidence for the existence of

eye movement-related signals in the activity of VT neurons. But
what is the origin of the extra-retinal properties? The extra-retinal

responses related to the ongoing eye movements might originate
from the proprioceptors of the extra-ocular muscles or, alterna-
tively, might represent the copy of the efferent command. These
two possibilities parallel the general debate about the origin of
information related to the actual eye position. According to the in-
flow theory, the Sherringtonian point of view, receptors in the ex-
tra-ocular muscles send this information to the central nervous
system. In contrast, the outflow theory, the Helmholtzian view,
states that eye position information arises from copies of the motor
program (for review see (Grusser, 1986)).

The proprioceptive origin of the eye-movement-related signals
can be definitively ruled out for two reasons: first, the density as
well as the types of proprioceptive elements in the extra-ocular
muscles of rhesus monkeys are unknown at present, the twitch
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Fig. 4. Convergence of different inputs on visual tracking (VT) neurons recorded
from MSTI. VT neurons convey information related to target movement in space to
the pontine nuclei, which provide the input to the cerebellum and extra-ocular
motor neurons. See text for further explanations.

reflex in the extra-ocular muscles is absent (Keller & Robinson,
1971). Second, as addressed above, the average response latency
of VT neurons is shorter than the eye-movement latency.

Alternatively, in accordance with the outflow theory, the extra-
retinal response properties might arise as an efference copy from
the motor-neurons innervating the extra-ocular muscles. In order
to test this hypothesis, we trained monkeys to track a moving tar-
get either by an isolated eye-movement or be a combined eye and
head movements. The color of the moving target indicated which
tracking behavior had to be executed: a red target indicated iso-
lated eye movements; a green target signaled combined eye and
head movement. The gaze movements in both tracking conditions
were very similar (see Fig. 3). However, the eye-in-head move-
ments (and therefore the activity of the motor-neurons) were en-
tirely different (Ilg, Schumann, & Thier, 2004).

We recorded the pursuit responses of VT neurons from MSTI in
these two tracking conditions. Our statistical analysis revealed a
significant difference between responses during pursuit in pre-
ferred and non-preferred direction, but no significant difference
between the different tracking conditions. Therefore, we can
clearly dismiss the possibility that the eye-movement-related
activity is an efference copy in the strict sense, i.e. arises from
the motor-neurons in the brainstem. To further characterize the
nature of the pursuit-related activity, we performed experiments
in which we combined a pursuit task with vestibular stimulation.
While the monkeys were sinusoidally rotated, they had to track a
target moving at a different frequency. The spectral analysis of
the obtained responses showed that the neurons responded to
the frequency of gaze and target movement, but not to the
frequency of vestibular stimulation. Finally, a correlation analysis
revealed that the activity is most closely related to target motion
in space (Ilg et al., 2004). However, this does not answer the
question as to the origin of the eye-movement-related signal.
Our present hypothesis that this signal originates from the frontal
eye field is currently under investigation (Fig. 4).

The last question addresses the origin of the head movement-
related signals. Since these signals are observed during passive ves-
tibular stimulation, the only possible sources are the semicircular
channels of the inner ear. It was proposed earlier that area MST
might be included in the processing of vestibular information, i.e.
that area MST receives information from the vestibular cortex such
as the parietal insular vestibular cortex (PIVC), the visual posterior
sylvian cortex (VPS) or area 2v (Guldin & Grusser, 1998). In the

meantime, sensitivity to vestibular stimulation was reported from
the ventral intra-parietal area VIP (Klam & Graf, 2006; Schlack,
Hoffmann, & Bremmer, 2002). These various cortical areas receive
their vestibular information from the semicircular canals and the
otolith via a relay station in the thalamus (Meng, May, Dickman,
& Angelaki, 2007).

5. Contributions of MST to goal-directed behavior

So far, the neuronal activity observed in MSTI was always dis-
cussed in terms of smooth pursuit eye movements. However, what
is the overall role of MSTI? Is this area a processor of retinal image
motion, eye and head movement-related signals whose only func-
tion is the generation of this type of eye movements? Or are there
other functions carried into execution by MSTI? In order to answer
this question, I will first focus on goal-directed behavior in general
and subsequently address motion perception in the absence of any
behavior.

Once we had identified the location of MSTI by our single-unit
recordings, we addressed the consequences of an artificial increase
or decrease of neuronal activity in this area. To increase the activ-
ity, we applied intra-cortical micro-stimulation through the same
micro-electrodes which were used for recordings. To decrease
the activity, we exchanged the micro-electrode with a glass pipette
and injected small amounts of the GABA agonist muscimol. In
short, we were able to replicate earlier findings regarding the exe-
cution of smooth pursuit eye movements (Illg & Schumann, 2007):
We observed an acceleration of eye speed caused by the micro-
stimulation (200 Hz of bipolar pulses, pulse length 200 pus, 50 to
80 uA, 200 ms delayed with respect to the onset of pursuit target)
if pursuit was performed in the preferred direction of the recording
site (Born, Groh, Zhao, & Lukasewycz, 2000; Komatsu & Wurtz,
1989). For this analysis, we determined the post-saccadic eye
velocity within a 50 ms time window. Interestingly, the effect of
micro-stimulation was significantly larger if the pursuit target
was switched off during stimulation. Micro-stimulation during fix-
ation of a stationary target did not result in an eye movement. Fol-
lowing the injection of muscimol (<4 pl, concentration 5 mg/ml in
H,0), we observed a reduction of steady-state gain for ipsiversive
target movement only; pursuit towards a contraversively moving
target was not affected (Dursteler & Wurtz, 1988; Dursteler, Wurtz,
& Newsome, 1987; Yamasaki & Wurtz, 1991). In addition to the
execution of eye movements, we trained our monkeys to perform
hand movements towards moving visual targets. Following the
GO signal indicated by a color change from red to blue of the fixa-
tion target, the monkeys had to reach out towards the moving tar-
get which appeared 200 to 500 ms prior to the GO signal. Pointing
was measured using a touch screen in front of the projection
screen. Since we switched off the target as soon as the hand move-
ment started, the pointing of the monkeys was ballistic.

During micro-stimulation which started simultaneously with
the GO signal, we observed a shift of the pointing movement into
the direction of the preferred direction of the stimulation site in
28 out of 29 stimulation sites. In most cases, the preferred direc-
tion of the stimulation site was identical to the direction of the
stimulation effect on eye and hand movement. In case of the tran-
sient lesion caused by the muscimol injection, we observed a shift
in pointing contraversive to the injection site, independent of the
direction of target motion (Ilg & Schumann, 2007).

In order to explain the effects of artificial increase and decrease
of activity, it is important to consider the concept of cortical col-
umns (Mountcastle, 1957) which is most likely present in MST
(Britten, 1998). Only if the tip of the electrode is centered within
a cortical column, whose size was estimated to 0.5 mm (Britten,
1998), the output of this particular column is augmented and the
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effect of micro-stimulation is evident. It was estimated earlier that
the spread of activity given by our stimulation parameters is in the
order of 0.1 mm (Stoney, Thompson, & Asanuma, 1968). If the elec-
trode is close to the border between two columns, the stimulation
effect is balanced. In 93 out of 136 stimulation sites we obtained
significant effects on eye movements, most likely these sites were
all centered within a cortical column. The fact that we observed a
larger effect in the temporary absence of the pursuit target is
another argument for the processing of retinal and extra-retinal
signals in MST. In the presence of the target, the artificial activity
is combined with retinal image motion and eye-movement-related
signals. In the absence of the target, the artificial activity is
combined with eye-movement-related activity only.

In contrast, the spread of muscimol was estimated in the order
of 3 mm (Martin, 1991), which means that the transient lesions af-
fected a much larger area. The reason for the observed ipsiversive
pursuit deficit following a unilateral MST lesion is still a matter of
debate. It seems less likely that an over-representation of neurons
with ipsiversive preferred direction is able to explain this deficit.
More convincing is an explanation based on functional grouping
of the cortical output: neurons with ipsiversive preferred direc-
tions constitute the cortical output to subcortical centers as the
pretectum (Ilg & Hoffmann, 1993) or the pontine nuclei. On the
other hand, neurons with contraversive preferred directions pro-
ject to the contralateral hemisphere (Hoffmann, Distler, & Ilg,
1992). So a unilateral lesion affects only ipsiversive pursuit. There
was a striking difference between the deficits observed in eye and
hand movements, respectively. The ipsiversive pursuit deficit indi-
cates parallel processing of both hemispheres. In contrast, hand
movements seem to depend on the balanced output of both hemi-
spheres. Thus, the contraversive deviation of pointing can be ex-
plained by the missing ipsiversive component reflecting the
inactivated hemisphere.

These results concerning the precision of hand movements
clearly demonstrate that MSTI is not only important for generating
smooth pursuit eye movements. So MSTI is no specific preproces-
sor of visual motion for smooth pursuit. But is MSTI also involved
in the processing if no goal-directed behavior at all is prepared if
the monkey is engaged in a psychophysical motion task? Do MSTI
neurons only respond to retinal image motion, eye and head move-
ment as described earlier during the execution of goal-directed
behavior or is there a general coding of inferred motion as pro-
posed by others (Assad & Maunsell, 1995)? It is important to note
here that after appropriate training, neurons recorded from MT
respond even to an arrow representing a moving stimulus (Schlack
& Albright, 2007).

6. Contributions of MT and MST to motion perception

In order to address visual motion processing in areas MT and
MST underlying motion perception we initially decided to use sec-
ond-order motion stimuli and moving visual and auditory stimuli
(Ilg & Churan, 2004). We successfully trained our monkeys to re-
port the direction of a moving stimulus in a direction discrimina-
tion task (DDT). During fixation of a stationary target, the actual
motion stimulus was displayed centered on the receptive field of
the recorded neuron. Subsequently, two saccade targets appeared
and the monkey made a saccade to the target that was in the direc-
tion of the movement.

We used motion stimuli defined by fourier-motion (coherent
motion), drift-balanced and theta motion stimuli. Each stimulus
consisted of a rectangle adjusted to the size of the receptive field
of the recorded neuron. In the case of fourier-motion, this moving
rectangle comprised a constant pattern of coherently moving dots.
For the drift-balanced motion, dots within the moving rectangle

changed their luminance. Drift-balanced motion can be envisaged
as a moving window in a structured proximal plane through which
a second, distal plane can be seen. Finally, in the case of theta mo-
tion, the rectangle consisted of dots moving to the left while the
rectangle moved to the right or vice versa. We have shown earlier
that human subjects are able to track these second-order motion
stimuli (Butzer, Ilg, & Zanker, 1997), despite the initiation of pur-
suit being mainly dominated by the Fourier component (Lindner
& Ilg, 2000).

The moving visual and auditory stimuli were generated by a
one-dimensional array of LEDs and loud-speakers which were
sequentially activated (Ilg & Churan, 2004). We applied visual,
auditory or bimodal moving stimuli. To our surprise, we did not
find a general response to moving stimuli in MT and MST despite
the fact that our monkeys performed all experiments close to
100% correctly. In the case of fourier-motion and visual motion,
we observed directionally selective responses in 38 MT and 68
MST neurons, as expected. For the drift-balanced stimulus, about
half of our recorded MST neurons gave significant response as also
reported by others (Albright, 1992; O’Keefe and Movshon, 1998).
When we applied the theta motion stimulus, all recorded neurons
responded to the motion of the individual dots, not of the entire
object. It seemed as if the neurons inverted their preferred direc-
tion. Using a slightly different stimulus, Anthony Movshon and col-
leagues arrived at the same conclusion, namely that MT neurons
represent local not global motion signals (Majaj, Carandini, &
Movshon, 2007).

Finally, we recorded from 6 MT and 27 MST neurons that
showed significant responses to the moving visual and bimodal
stimulus, but no response at all was observed in these neurons dur-
ing presentation of the moving sound source.

In contrast to our own results, the importance of MT and MST
for motion perception has been convincingly shown in single-unit
studies (Bisley & Pasternak, 2000; Britten, Newsome, Shadlen, &
Celebrini, 1996; Celebrini & Newsome, 1994), in lesions studies
(Newsome & Pare, 1988; Rudolph & Pasternak, 1999) and in mi-
cro-stimulation studies (Bisley, Zaksas, & Pasternak, 2001; Cele-
brini & Newsome, 1995; Ditterich, Mazurek, & Shadlen, 2003).
However, the common denominator of all these studies, clearly dif-
fering from our own study, is that there was a visual stimulus pres-
ent which triggered the perception. There is only a single study
demonstrating that neurons in this part of the brain respond to in-
ferred motion in the absence of any physical stimulus (Assad &
Maunsell, 1995).

In contrast to the experiments using second-order motion and
moving sound sources, we decided to analyze the effect of the tem-
poral background properties on perception and neuronal re-
sponses. The detrimental effect of background flicker on motion
perception and on the sharpness of directional tuning of 155 neu-
rons recorded from MT and MST argues for the contribution of
these areas to motion perception (Churan & Ilg, 2002). In a series
of psychophysical experiments, we applied the direction discrimi-
nation task (DDT) described above and determined the thresholds
of stimulus presentation for human subjects and monkeys. If the
fourier-motion stimulus was presented in front of a dynamic ran-
dom dot pattern (flicker), the stimulus presentation threshold was
elevated, in humans from 25 ms to 60 ms, in monkeys from 99 ms
to 280 ms. In addition, we determined the sharpness of the direc-
tionally selective responses expressed as d’ for fourier-motion pre-
sentation in front of a static and flickering background. For the
flickering background, d’ of the neuronal responses was reduced
approximately 30% compared to d’ obtained in the static back-
ground condition. The comparable effects of background flicker
on motion perception and neuronal responses recorded from MT
and MST suggest the notion that MT and MST are indeed involved
in the processing underlying motion perception as suggested by
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many other studies. But there is also clear evidence that MT and
MST are definitively not the final stages with respect to perception
of motion.
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